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To be able to simulate spatial patterns of predator-prey interactions, many

spatially-explicit ecosystem modeling platforms, including Atlantis, need to be provided

with distribution maps defining the annual or seasonal spatial distributions of functional

groups and life stages. We developed a methodology combining extrapolation and

interpolation of the predictions made by statistical habitat models to produce distribution

maps for the fish and invertebrates represented in the Atlantis model of the Gulf of Mexico

(GOM) Large Marine Ecosystem (LME) (“Atlantis-GOM”). This methodology consists of:

(1) compiling a large monitoring database, gathering all the fisheries-independent and

fisheries-dependent data collected in the northern (U.S.) GOM since 2000; (2) compiling

a large environmental database, storing all the environmental parameters known to

influence the spatial distribution patterns of fish and invertebrates of the GOM; (3) fitting

binomial generalized additive models (GAMs) to the large monitoring and environmental

databases, and geostatistical binomial generalized linear mixed models (GLMMs) to

the large monitoring database; and (4) employing GAM predictions to infer spatial

distributions in the southern GOM, and GLMM predictions to infer spatial distributions

in the U.S. GOM. Thus, our methodology allows for reasonable extrapolation in the

southern GOM based on a large amount of monitoring and environmental data, and

for interpolation in the U.S. GOM accurately reflecting the probability of encountering

fish and invertebrates in that region. We used an iterative cross-validation procedure to

validate GAMs. When a GAM did not pass the validation test, we employed a GAM for a

related functional group/life stage to generate distribution maps for the southern GOM.

In addition, no geostatistical GLMMs were fit for the functional groups and life stages

whose depth, longitudinal and latitudinal ranges within the U.S. GOM are not entirely

covered by the data from the large monitoring database; for those, only GAM predictions

were employed to obtain distribution maps for Atlantis-GOM. Pearson residuals were
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computed to validate geostatistical binomial GLMMs. Ultimately, 53 annual maps and

64 seasonal maps (for 32 different functional groups/life stages) were produced for

Atlantis-GOM. Our methodology could serve other world’s regions characterized by a

large surface area, particularly LMEs bordered by several countries.

Keywords: distribution maps, spatially-explicit ecosystem model, Atlantis, Gulf of Mexico, species distribution

models, generalized additive models, geostatistical generalized linear mixed models, large monitoring database

INTRODUCTION

Ecosystem simulation models are valuable tools for
understanding the impacts of environmental and anthropogenic
stressors on marine ecosystems and for informing resource
management (Fulton, 2010; Christensen and Walters, 2011;
O’Farrell et al., 2017). A wide diversity of ecosystem modeling
platforms is now available, including the spatially-explicit
modeling frameworks Atlantis (Fulton et al., 2004, 2007,
2011), Ecopath with Ecosim with Ecospace (Pauly et al., 2000;
Christensen and Walters, 2004; Walters et al., 2010) and
OSMOSE (Shin and Cury, 2001, 2004; Grüss et al., 2016c).
The simulation of predator-prey interactions is a key feature
of ecosystem models (Plaganyi, 2007; Christensen and Walters,
2011; Grüss et al., 2016a). To simulate predator-prey interactions,
spatially-explicit ecosystem models need to represent patterns
of spatial overlap between predators and prey. To be able to
represent patterns of spatial overlap between predators and prey,
many spatially-explicit ecosystem modeling platforms, including
Atlantis and OSMOSE, need to be provided with distribution
maps defining the annual or seasonal spatial distributions of
functional groups1 and life stages.

The extrapolation of spatial distribution patterns predicted
by statistical models integrating environmental covariates
(commonly called “species distribution models”) is a useful
means to produce distribution maps for spatially-explicit
ecosystem models (Drexler and Ainsworth, 2013; Grüss et al.,
2014, 2016d; Hattab et al., 2014). For example, Drexler and
Ainsworth (2013) fitted generalized additive models (GAMs) to
monitoring data collected in the U.S. Gulf of Mexico (GOM).
The authors then extrapolated the predictions made by their
GAMs to the entire GOM Large Marine Ecosystem (LME) to
obtain distribution maps for some of the functional groups
(all life stages combined) represented in the Atlantis model of
the GOM LME (“Atlantis-GOM”; Figure 1). While Drexler and
Ainsworth’s (2013) methodology is more sophisticated than usual
methodologies for generating distribution maps for ecosystem
models, it has some limitations. Firstly, Drexler and Ainsworth
(2013) employed only one groundfish trawl survey dataset to
produce all their distribution maps, which resulted in unreliable
predictions of spatial distributions for those functional groups
that are poorly sampled by groundfish trawl (e.g., some of
the pelagic functional groups represented in Atlantis-GOM).
Secondly, Drexler and Ainsworth (2013) used the same set

1Functional groups are groups of species sharing similar ecological niches and life-

history traits. Usually, functional groups also share similar body size ranges and

exploitation patterns.

of environmental covariates (dominant sediment type, bottom
depth, bottom temperature, bottom dissolved oxygen (DO)
concentration, and surface chlorophyll-a concentration) in all
their GAMs; however, other environmental parameters may have
a stronger influence of the spatial distribution patterns of the
functional groups represented in Atlantis-GOM (e.g., sea surface
temperature (SST) in the case of most pelagic functional groups).
Lastly, Drexler and Ainsworth’s (2013) GAMs did not account for
spatial autocorrelation (spatial structure), because their purpose
was to be employed for performing extrapolation over the entire
GOM LME; this led to significant, unmodeled spatial patterns
in Drexler and Ainsworth’s (2013) GAM residuals for functional
groups associated with small-scale habitat features, such as red
grouper (Epinephelus morio) and gag (Mycteroperca microlepis)
(unpublished data).

Interpolation from the predictions of geostatistical models is
a means to account for spatial structure in spatial distribution
patterns (Guisan and Zimmermann, 2000; Saul et al., 2013;
Thorson et al., 2015; Grüss et al., 2017b). For instance, Grüss
et al. (2017b) fitted geostatistical binomial generalized linear
mixed models (GLMMs) to a blending of fisheries-dependent
and fisheries-independent monitoring data collected in the
U.S. GOM. The authors then interpolated geostatistical GLMM
predictions to a spatial grid covering the entire U.S. GOM to be

able to generate distribution maps for an OSMOSE model of the
West Florida Shelf. Geostatistical binomial GLMMs accurately
reflect the probability of encountering functional groups/life
stages in a marine ecosystem. However, these models cannot

be used to interpolate the spatial distributions of functional
groups/life stages over the entire GOM LME, due to the scarcity
or limited access to monitoring data collected in the southern
GOM (i.e., the Mexican and Cuban GOM and the international

waters of the GOM).
To address the above mentioned issues, we developed a

novel methodology combining extrapolation and interpolation

of the predictions made by statistical habitat models to produce

distributionmaps for the fish and invertebrates represented in the
Atlantis-GOM ecosystem model. This methodology consists of
fitting binomial GAMs to a largemonitoring database for the U.S.

GOMand a large environmental database for the GOMLME, and

geostatistical binomial GLMMs to the large monitoring database
for the U.S. GOM; and then employing GAM predictions to
infer fish and invertebrate spatial distributions in the southern

GOM, and geostatistical GLMM predictions to infer fish and
invertebrate spatial distributions in the U.S. GOM. The large
monitoring database we compiled for the U.S. GOM gathers
all the fisheries-dependent and fisheries-independent monitoring
data collected in the region between 2000 and 2016 using random
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FIGURE 1 | Study area. (A) Map of the Gulf of Mexico Large Marine Ecosystem. Depth contours are labeled in 20-, 40-, 60-, 80-, 100-, 200-, and 1,000-m contours.

Important features are labeled and include: the northern Campeche Bank, the southern Campeche Bank, the De Soto canyon, the West Florida Shelf, the Dry

Tortugas (A), and the Florida Keys (B). MS, Mississippi; AL, Alabama. The black dashed-dotted line delineates the U.S. exclusive economic zone. (B) Spatial polygons

of the Atlantis model of the Gulf of Mexico (GOM) referred to as “Atlantis-GOM”. Atlantis-GOM polygons located in U.S. GOM are filled in dark gray, while those

located outside the U.S. GOM (i.e., in the Mexican or Cuban GOM or in international waters) are filled in lighter gray. The two “boundary polygons” of Atlantis-GOM,

which do not interact with the rest of the model, are filled in white.

sampling schemes. Our large environmental database gathers all
the environmental parameters known to influence the spatial
distributions of fish and invertebrates of the GOM that are
available for both the U.S. and the southern GOM. Thus, our
methodology allows for reasonable extrapolation in the southern
GOM based on a large amount of monitoring and environmental
data, and for interpolation in the U.S. GOM accurately reflecting
the probability of encountering fish and invertebrates in that

region. Though initially designed for the GOM, our methodology
can serve other regions of the world characterized by a large
surface area and only partially covered by available monitoring
data, such as LMEs bordered by several countries (e.g., the
Benguela Current LME).

We present our methodology, which allowed us to construct
a total of 116 annual and seasonal distribution maps for the fish
and invertebrate functional groups and life stages represented in
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the Atlantis-GOM ecosystem model. We first briefly present the
GOM LME and the Atlantis-GOM model. Then, we provide an
overview of our methodology. Next, we describe the compilation
of the large monitoring database for the U.S GOM and of the
large environmental database for the GOM LME. Afterwards,
we explain how we developed and evaluated binomial GAMs
for the entire GOM LME and geostatistical binomial GLMMs
for the U.S. GOM. Finally, we combine GAM predictions and
geostatistical GLMM predictions according to our methodology
to generate distribution maps for the fish and invertebrates
represented in Atlantis-GOM.

MATERIALS AND METHODS

The GOM LME and the Atlantis-GOM
Ecosystem Model
The GOM is one of the world’s 64 LMEs (NOS, 2008). It
is bounded on the north by the U.S., and on the south by
Mexico and Cuba (Figure 1). Five U.S. States border the U.S.
GOM: Florida, Alabama, Mississippi, Louisiana, and Texas. The
spatial domain of the Atlantis-GOM ecosystem model covers
the entire GOM LME, including the U.S. GOM, the Mexican
GOM, the CubanGOM, and the international waters of the GOM
(Figure 1).

Atlantis is a three-dimensional, biogeochemical, and
trophic modeling platform, which represents organisms from
marine bacteria to apex predators (Fulton et al., 2004, 2007,
2011). Atlantis characterizes biogeography using irregular
three-dimensional polygons, which can provide high spatial
resolution in key areas while minimizing computation time in
homogeneous space. The modeling platform utilizes a biological
sub-model that simulates nutrient, detritus and microbial cycles
as well as species ecology, and a human impacts sub-model
which can represent a wide variety of fisheries activities by
modeling direct and indirect functional group mortality and
habitat impacts. The distribution maps and vertical distribution
profiles fed into Atlantis allow the modeling platform to
allocate the biomasses of functional groups and life stages in
the horizontal and vertical dimension, respectively (Grüss et al.,
2016a).

The Atlantis-GOM model comprises 39 polygons for the
U.S. GOM and 24 polygons for the southern GOM, as well
as two “boundary polygons”, which do not interact with the
rest of the model (Figure 1; Ainsworth et al., 2015). Atlantis-
GOM explicitly considers 91 functional groups, including four
marine mammals, two seabirds, three sea turtles, 48 fish groups,
15 invertebrate groups (of which three are filter feeders),
four structural species, two zooplankton groups, eight primary
producers (of which four are phytoplankton groups), and four
nutrient cyclers (Supplementary Table 1). In the present study,
we focus on the 63 fish and invertebrate functional groups
represented in Atlantis-GOM (Table 1).We identified a reference
species for each of these 63 functional groups. The identification
of reference species was only meant to facilitate literature reviews
for functional groups (see subsections Compilation of a Large
Monitoring Database for the U.S. GOM and Compilation of a

Large Environmental Database for the GOM LME), and data
extraction and statistical model fitting considered all the species
making up each of the functional groups.

Overview of the Methodology Developed in
the Present Study
To produce distribution maps for the fish and invertebrates
represented in the Atlantis-GOM ecosystem model at different
seasons, we proceeded in six steps (Figure 2).

First, we compiled a large monitoring database including
data collected for fish and invertebrates by monitoring programs
of the U.S. GOM over the period 2000–2016 (subsection
Compilation of a Large Monitoring Database for the U.S. GOM;
Step 1A in Figure 2), and a large environmental database for the
GOM LME (subsection Compilation of a Large Environmental
Database for the GOM LME; Step 1B in Figure 2).

Second, we fitted binomial GAMs to the large monitoring
and environmental databases and validated these GAMs
(subsection Development and Evaluation of Binomial GAMs;
Step 2A in Figure 2), and we also fitted geostatistical binomial
GLMMs to the large monitoring database and validated these
geostatistical GLMMs (subsection Development and Evaluation
of Geostatistical Binomial GLMMs; Step 2B in Figure 2).
Binomial GAMs and geostatistical binomial GLMMs predict the
probability of encountering the fish and invertebrate functional
groups and life stages represented in the Atlantis-GOMmodel in
the GOM LME and the U.S. GOM, respectively.

Third, we employed fitted binomial GAMs to generate 0.18◦

× 0.18◦ (20 × 20 km) long-term probability of encounter maps
for the GOM LME (subsection Production of Distribution Maps
for the GOM LME from the Predictions Made by Fitted Binomial
GAMs; Step 3A in Figure 2), and used the fitted geostatistical
binomial GLMMs to generate 20 × 20 km long-term probability
of encounter maps for the U.S. GOM (subsection Production of
Distribution Maps for the U.S. GOM from the Predictions Made
by Fitted Geostatistical Binomial GLMMs; Step 3B in Figure 2).
The “long-term probabilities of encounter” mentioned here are
probabilities of encounter for an average year during the period
2000–2016 (calculated separately by seasons for some functional
groups/life stages), as opposed to probabilities of encounter for
each of years of the period 2000–2016.

Fourth, we averaged the long-term probabilities of encounter
predicted by binomial models over the extent of each Atlantis-
GOM polygon, and converted the resulting probabilities of
encounter into relative abundances (such that the sum of
relative abundances for a given map is equal to 1.0; subsection
Construction of Distribution Maps Usable in the Atlantis-GOM
Ecosystem Model; Steps 4A,B in Figure 2).

Fifth, for each functional group/life stage/season, we
generated: (1) a map of relative abundance for the Atlantis-GOM
polygons for the southern GOM from the map of relative
abundance produced from GAM predictions (subsection
Construction of Distribution Maps Usable in the Atlantis-GOM
EcosystemModel ; Step 5A in Figure 2); and (2) a map of relative
abundance for the Atlantis-GOM polygons for the U.S. GOM
from the map of relative abundance produced from geostatistical
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TABLE 1 | Fish and invertebrate functional groups represented in the

Atlantis-GOM ecosystem model.

Functional group Reference species

Blacktip shark Blacktip shark (Carcharhinus limbatus)

Benthic feeding sharks Smalltooth sawfish (Pristis pectinata)

Large sharks Sandbar shark (Carcharhinus plumbeus)

Filter feeding sharks Basking shark (Cetorhinus maximus)

Small sharks Atlantic sharpnose shark (Rhizoprionodon terraenovae)

Skates and rays Cownose ray (Rhinoptera bonasus)

Gag Gag (Mycteroperca microlepis)

Red grouper Red grouper (Epinephelus morio)

Scamp Scamp (Mycteroperca phenax)

Shallow Serranidae Black sea bass (Centropristis striata)

Deep Serranidae Yellowedge grouper (Hyporthodus flavolimbatus)

Red snapper Red snapper (Lutjanus campechanus)

Vermilion snapper Vermilion snapper (Rhomboplites aurorubens)

Lutjanidae Gray snapper (Lutjanus griseus)

Bioeroding fish Emerald parrotfish (Nicholsina usta usta)

Large reef fish Doctorfish (Acanthurus chirurgus)

Small reef fish White grunt (Haemulon plumierii)

Black drum Black drum (Pogonias cromis)

Red drum Red drum (Sciaenops ocellatus)

Seatrouts Sand seatrout (Cynoscion arenarius)

Sciaenidae Gulf kingfish (Menticirrhus littoralis)

Ladyfish Northern ladyfish (Elops saurus)

Mullets Striped mullet (Mugil cephalus)

Pompanos Florida pompano (Trachinotus carolinus)

Sheepshead Sheepshead (Archosargus probatocephalus)

Snooks Common snook (Centropomus undecimalis)

Flatfish Gulf flounder (Paralichthys albigutta)

Other demersal fish Hardhead (Ariopsis felis)

Small demersal fish Rainwater killifish (Lucania parva)

Yellowfin tuna Yellowfin tuna (Thunnus albacares)

Bluefin tuna Atlantic bluefin tuna (Thunnus thynnus)

Little tunny Little tunny (Euthynnus alletteratus)

Other tunas Bigeye tuna (Thunnus obesus)

Swordfish Swordfish (Xiphias gladius)

White marlin White marlin (Tetrapturus albidus)

Blue marlin Blue marlin (Makaira nigricans)

Other billfish Atlantic sailfish (Istiophorus albicans)

Greater amberjack Greater amberjack (Seriola dumerili)

Jacks Round scad (Decapterus punctatus)

King mackerel King mackerel (Scomberomorus cavalla)

Spanish mackerel Spanish mackerel (Scomberomorus maculatus)

Spanish sardine Spanish sardine (Sardinella aurita)

Large pelagic fish Mahi mahi (Coryphaena equiselis)

Deep water fish Great northern tilefish (Lopholatilus chamaeleonticeps)

Menhadens Gulf menhaden (Brevoortia patronus)

Pinfish Pinfish (Lagodon rhomboides)

Medium pelagic fish Atlantic fanfish (Pterycombus brama)

Small pelagic fish Scaled sardine (Harengula jaguana)

Brown shrimp Brown shrimp (Farfantepenaeus aztecus)

White shrimp White shrimp (Litopenaeus setiferus)

(Continued)

TABLE 1 | Continued

Functional group Reference species

Pink shrimp Pink shrimp (Farfantepenaeus duorarum)

Other shrimps Mantis shrimp (Squilla empusa)

Blue crab Blue crab (Callinectes sapidus)

Stone crab Stone crab (Menippe mercenaria)

Crabs and lobsters Spiny lobster (Panulirus argus)

Jellyfish Common jellyfish (Aurelia aurita)

Squids Atlantic brief squid (Lolliguncula brevis)

Carnivorous

macrobenthos

Atlantic black sea hare (Aplysia morio)

Infaunal meiobenthos Bearded fireworm (Hermodice carunculata)

Herbivorous

echinoderms

Sand dollar (Mellita quinquiesperforata)

Oysters Eastern oyster (Crassostrea virginica)

Bivalves Calico scallop (Argopecten gibbus)

Sessile filter feeders Balane (Balanus trigonus)

A reference species was identified for each of these functional groups.

GLMM predictions, accounting for the relative abundance
in the U.S. GOM relative to the southern GOM (subsection
Construction of Distribution Maps Usable in the Atlantis-GOM
Ecosystem Model; Step 5B in Figure 2).

Sixth and lastly, the maps of relative abundance for the U.S.
and southern GOM were combined to construct a distribution
map usable in the Atlantis-GOM ecosystem model (subsection
Construction of Distribution Maps Usable in the Atlantis-GOM
Ecosystem Model; Step 6 in Figure 2).

Compilation of a Large Monitoring
Database for the U.S. GOM
We contacted the State and Federal agencies, universities and
non-governmental organizations which conduct monitoring
programs in the GOM using random sampling schemes. We
requested the data collected by these different agencies, institutes
and organizations during the period of 2000–2016. We received
37 monitoring datasets, including 29 fisheries-independent
datasets and eight fisheries-dependent datasets, which were all
included in the large monitoring database for the U.S. GOM
(Table 2 and Supplementary Table 2).

A literature review was conducted to determine: (1) whether
we should generate distribution maps for the juvenile and adult
stages or all the life stages of the fish and invertebrate functional
groups represented in Atlantis-GOM; and (2) whether or not
we should generate distribution maps for different seasons for
these functional groups and life stages (Supplementary Table 3).
We produced distribution maps for the juvenile and adult
stages of a given functional group when the literature review
indicated that the functional group undertakes ontogenetic
habitat shifts, i.e., changes habitats as it grows older (e.g., red
grouper and gag; Mullaney, 1994; Saul et al., 2013; Carruthers
et al., 2015).

Next, for each of the fish and invertebrate functional
groups/life stages, we extracted the following information from
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FIGURE 2 | Schematic overview of the methodology developed and employed in the present study. (Step 1A) Construction of a large environmental database for the

Gulf of Mexico (GOM) Large Marine Ecosystem (LME). (Step 1B) Construction of a large monitoring database for the northern (U.S.) GOM. (Step 2A) Fitting of

binomial generalized additive models (GAMs) to the large environmental and monitoring databases and validation of the GAMs. (Step 2B) Fitting of geostatistical

binomial generalized linear mixed models (GLMMs) to the large monitoring database and validation of the geostatistical GLMMs. (Step 3A) Production of long-term

probability of encounter maps from GAM predictions. (Step 3B) Production of long-term probability of encounter maps from geostatistical GLMM predictions. (Step

4A) Production of maps of relative abundance for the GOM LME from the maps produced in Step 3A (such that the sum of relative abundances for each map is equal

to 1.0). In this example, the sum of relative abundances in the U.S. GOM is equal to N1 = 0.75 and the sum of relative abundances in the southern GOM is equal to

N2 = 0.25. (Step 4B) Production of maps of relative abundance for the U.S. GOM from the maps produced in Step 3B (such that the sum of relative abundances for

each map is equal to 1.0). (Step 5A) Production of maps of relative abundance for the southern GOM from the maps produced in Step 4A (such that, in this example,

the sum of relative abundances for the map for the southern GOM is equal to N2 = 0.25). (Step 5B) Production of maps of relative abundance for the U.S. GOM from

the maps produced in Step 4B, rescaled to account for relative abundance in the U.S. GOM relative to the southern GOM according to the map produced in Step 4A

(such that, in this example, the sum of relative abundances for the map for the U.S. GOM is equal to N1 = 0.75). (Step 6) Combination of the maps of relative

abundance for the southern and U.S. GOM to generate distribution maps usable in the Atlantis-GOM ecosystem model (such that the sum of relative abundances for

each distribution map for Atlantis-GOM is equal to 1.0).

each of the 37 monitoring datasets included in the large
monitoring database for the U.S. GOM: (1) the longitudes and
latitudes at which the sampling events occurred; (2) the years
and months during which the sampling events occurred; and (3)
whether, during the sampling events, the functional group/life
stage considered was encountered or not (0’s and 1’s). To obtain
encounters/non-encounters for juvenile and adult life stages,
we used the body length estimates recorded by monitoring
programs and body length at sexual maturity from FishBase
and SeaLifeBase (Froese and Pauly, 2015; Palomares and Pauly,
2015).We gauged the quality of the 37 datasets (e.g., does the
monitoring program have a high or a low spatio-temporal
resolution?) as we extracted information from them (Table 2);
this allowed us to identify the datasets that we should not be used
when better datasets are available.

Finally, for each of the fish and invertebrate functional
groups/life stages, we determined the monitoring programs

from the large monitoring database for the U.S. GOM that
it would be reasonable to employ to fit statistical models. To
select monitoring datasets for a given functional group/life stage,
we applied the following rules: (1) datasets with fewer than
50 encounters should be excluded from statistical modeling
exercises (Leathwick et al., 2006; Austin, 2007; Grüss et al.,
2017b,c); (2) years with fewer than five encounters should
be excluded from statistical modeling exercises (Grüss et al.,
2017b,c); and (3) a dataset gauged to be of low quality (for the
purpose of the present study) should be excluded from statistical
modeling exercises if better datasets are available (Grüss et al.,
2017b).

Compilation of a Large Environmental
Database for the GOM LME
A literature review was conducted to identify the environmental
parameters influencing the spatial distribution patterns of the
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TABLE 2 | Monitoring programs comprising the large monitoring database for the U.S. Gulf of Mexico (GOM).

Name of the monitoring program Program

alias

Fisheries-independent or

fisheries-dependent?

Quality of the dataset

(for the purpose of

the present study)

Why considered to be of high or low

quality?

AMRD FAMP Gillnet Survey ALGILL Fisheries-independent High quality Collected data at numerous sites over

multiple years and months

NMFS Bottom Longline Survey BLL Fisheries-independent High quality Collected data at numerous sites over the

entire GOM

Deep Pelagic Nekton Dynamics of the Gulf of

Mexico (DEEPEND) Survey

DEEPEND Fisheries-independent Low quality The data available to us were collected at

a limited number of sites over 2 months of

two consecutive years (May and August) in

the offshore areas of central GOM only

Northern GOM Continental Slope Habitats and

Benthic Ecology Study (DGoMB) Survey

DGOMB Fisheries-independent Low quality Collected data at a limited number of sites

during the summer months of the period

2000–2002 in the offshore areas of the

GOM only

NMFS Expanded Annual Stock Assessment

(EASA) Survey – Longline

EASALL Fisheries-independent High quality Collected data collected at numerous sites

over the entire GOM

NMFS EASA Survey – Vertical Line EASAVL Fisheries-independent High quality Collected data at numerous sites over the

entire GOM

FWRI Bay Seine Survey FLBAY Fisheries-independent High quality Collected data at numerous sites

FWRI Haul Seine Survey FLHAUL Fisheries-independent High quality Collected data at numerous sites

FWRI For-Hire At-Sea Observer Program FLOBS Fisheries-dependent High quality Collected data at numerous sites off West

Florida

FWRI Purse Seine Survey FLPURSE Fisheries-independent High quality Collected data at numerous sites

FWRI Reef Fish Trap Survey FLTRAP Fisheries-independent High quality Collected data at numerous sites

FWRI Trawl Survey FLTRAWL Fisheries-independent High quality Collected data at numerous sites

FWRI Reef Fish Video Survey FLVIDEO Fisheries-independent High quality Collected data at numerous sites

NMFS Gulf of Mexico Shark Pupping and

Nursery (GULFSPAN) Survey

GULFSPAN Fisheries-independent High quality Collected data at numerous sites in

northwestern Florida

Gulf of Mexico Fisheries Information Network

(GulfFIN) Head Boat Port Sampling Program

GULFFINPORT Fisheries-dependent Low quality Has a high spatial resolution; however, the

geographic coordinates associated with

some of the GULFFINPORT data are

located inland (due to fishers unwilling to

share the geographic coordinates of their

fishing locations)

SEAMAP Gulf of Mexico Inshore Bottom

Longline Survey

INBLL Fisheries-independent High quality Collected data at numerous sites over a

large fraction of the GOM

LDWF Vertical Line Survey LAVL Fisheries-independent High quality Collected data at multiple sites

MDMR Sport Fish Shark Gillnet Survey MSGILL Fisheries-independent Low quality Collected data at multiple sites; however,

teleosts were documented by number

caught in each panel in later years only

MDMR Sport Fish Shark Handline Survey MSHAND Fisheries-independent High quality Collected data at multiple sites

MDMR FAM Trawl Survey MSTRAWL Fisheries-independent High quality Collected data at numerous sites

NMFS Southeast Gillnet Observer Program OBSGILL Fisheries-dependent Low quality Collected data at multiple sites in the

eastern GOM; however, some of the

OBSGILL data were collected in close

proximity (using different panels of the

same gear)

Reef Fish Bottom Longline Observer Program OBSLL Fisheries-dependent High quality Collected data at numerous sites over the

entire GOM

Southeastern Shrimp Fisheries Observer

Coverage Program

OBSSHRIMP Fisheries-dependent High quality Collected data at numerous sites over the

entire GOM

Reef Fish Vertical Line Observer Program OBSVL Fisheries-dependent High quality Collected data at numerous sites over the

entire GOM

NMFS Panama City Trap Survey PCTRAP Fisheries-independent High quality Collected data at numerous sites

NMFS Panama City Video Survey PCVIDEO Fisheries-independent High quality Collected data at numerous sites

NMFS Pelagic Observer Program POP Fisheries-dependent High quality Collected data at numerous sites over the

entire GOM and in international waters

(Continued)
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TABLE 2 | Continued

Name of the monitoring program Program

alias

Fisheries-independent or

fisheries-dependent?

Quality of the dataset

(for the purpose of

the present study)

Why considered to be of high or low

quality?

REEF Fish Survey Project REEF Fisheries-independent High quality Collected data at numerous sites over the

entire GOM

NMFS Shark Bottom Longline Observer

Program

SBLOP Fisheries-dependent High quality Collected data at numerous sites over the

entire GOM

NMFS Small Pelagics Survey SMALLPEL Fisheries-independent High quality Collected data at numerous sites over the

entire GOM

SEAMAP Groundfish/Trawl Survey TRAWL Fisheries-independent High quality Collected data at numerous sites over the

entire GOM

TPWD Bottom Longline Survey TXBLL Fisheries-independent High quality Collected data over the entire Texas

coastal zone

TPWD Gillnet Survey TXGILL Fisheries-independent High quality Collected data at numerous sites over the

entire Texas coastal zone

TPWD Seine Survey TXSEINE Fisheries-independent High quality Collected data at numerous sites over the

entire Texas coastal zone

TPWD Trawl Survey TXTRAWL Fisheries-independent High quality Collected data at numerous sites over the

entire Texas coastal zone

SEAMAP Reef Fish Video Survey VIDEO Fisheries-independent High quality Collected data at numerous sites over the

entire GOM

SEAMAP Gulf of Mexico Vertical Longline

Survey

VL Fisheries-independent High quality Collected data at numerous sites over a

large fraction of the GOM

AMRD, Alabama Marine Resources Division; FAMP, Fisheries Assessment and Monitoring Program; NMFS, National Marine Fisheries Service; FWRI, Fish and Wildlife Research Institute;

SEAMAP, Southeast Area Monitoring and Assessment Program; LDWF, Louisiana Department of Wildlife and Fisheries; MDMR, Mississippi Department of Marine Resources; FAM,

Fisheries Assessment and Monitoring; REEF, Reef Environmental Education Foundation; TPWD, Texas Parks and Wildlife Department.

functional groups and life stages considered in this study and
for which estimates could be obtained for the entire GOM LME
(Supplementary Table 3). The literature review revealed that
a total of 21 environmental parameters should be included in
the large environmental database for the GOM LME (Table 3).
Two of these 21 environmental parameters are categorical
(presence/absence of seagrass, and dominant sediment type),
while the others are continuous (e.g., bottom depth, SST, local
percentage of mud). Some of these environmental parameters
were defined for the different months of the year through
the construction of “climatologies” depicting average monthly
conditions for the period 2000–2016 (e.g., bottom salinity,
oceanic current speed), while the others are constant over time
(e.g., terrain ruggedness index, local percentage of natural reef)
(Supplementary Table 4).

From the large environmental database for the GOM LME,
we constructed a 20 × 20 km gridded map of environmental
parameters covering the entire spatial domain of the Atlantis-
GOM ecosystem model. This gridded map was used both
for fitting binomial GAMs and making predictions with fitted
binomial GAMs. To fit GAMs, the griddedmap of environmental
parameters was overlaid with the starting points of observations
from the large monitoring database (i.e., the locations where
monitoring events such as trawls where initiated). To be able
to map spatial distributions using the predictions made by
fitted GAMs, the gridded map of environmental parameters was
overlaid with prediction grids (The construction of prediction
grids for the different functional groups/life stages is described
below).

Development and Evaluation of Binomial
GAMs
Collinearity Analysis
Prior to fitting binomial GAMs, for each functional group/life
stage, we assessed the degree of collinearity between all
environmental covariates (e.g., bottom depth, SST, surface
salinity, and oceanic current speed in the case of white
marlin (Tetrapturus albidus; Supplementary Table 3). This
collinearity analysis was needed, since statistical regressions
may be sensitive to correlated covariates (Guisan et al.,
2002; Dormann et al., 2013). For each functional group/life
stage, we computed Pearson’s correlation coefficients between
environmental covariates (Booth et al., 1994; Brotons et al., 2004;
Dormann et al., 2013). According to Leathwick et al. (2006)
and Dormann et al. (2013), environmental covariates for which
pairwise correlations exceed 0.7 in absolute value should be
discarded.

Fitting of Binomial GAMs
For each of the functional groups/life stages, we fitted a binomial
GAM using appropriate datasets from the large monitoring
database for the U.S. GOM and the R package “mgcv” (Wood
and Augustin, 2002; Wood, 2006), following the equation:

g(η) = s(x1)+ s(x2)+ . . . + s(xn)+ factor(year)

+ factor(monitoring program) (1)

where η is the encounter probability; g is the logit link function
between η and each additive covariate; s is a thin plate regression
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TABLE 3 | Environmental parameters included in the large environmental

database for the Gulf of Mexico Large Marine Ecosystem.

Environmental parameter Unit or levels

Bottom depth m

Bottom dissolved oxygen concentration mL.L−1

Bottom salinity unitless

Bottom temperature ◦C

Diffuse attenuation coefficient at

490 nm (indicator of water turbidity)

m−1

Distance from shore km

Distance to coastal rivers km

Distance to estuaries and lagoons km

Dominant sediment type rock, gravel, sand, mud

Local percentage of hardbottom %

Local percentage of mud %

Local percentage of natural reef %

Local percentage of sand %

Oceanic current speed m.s−1

Precipitation mm

Presence/absence of seagrass present, absent

Sea surface temperature ◦C

Surface chlorophyll-a concentration mg.m−3

Surface dissolved oxygen concentration mL.L−1

Surface salinity unitless

Terrain Ruggedness Index unitless

The data used to generate spatial estimates of environmental parameters, as well as

the manipulations required on these data to attain a continuous surface with which to

fit generalized additive models (GAMs) and make predictions with the fitted GAMs, are

described in Supplementary Table 4.

spline fitted to a given environmental covariate; x1, x2, . . . , xn
are the environmental covariates selected after the collinearity
analysis; and year and monitoring program are “nuisance
variables” (i.e., variables that are not of immediate interest but
that must be accounted for in the analysis) treated as fixed
effect factors (Farmer and Karnauskas, 2013; Grüss et al., 2016a,
2017a). The fact that year and monitoring program are fixed
effect factors entails that it will be necessary to choose a given year
and a given monitoring program to make predictions with fitted
GAMs (in this case, the average year effect and the monitoring
program effect with the highest selectivity; Punt et al., 2000;
Maunder and Punt, 2004; Farmer and Karnauskas, 2013; Grüss
et al., 2016a; see subsection Production of Distribution Maps for
the GOM LME from the Predictions Made by Fitted Binomial
GAMs). Ecosystem models such as Atlantis-GOM require long-
term averages as input (Grüss et al., 2016a; O’Farrell et al.,
2017), so encounter probability predictions for an average year
is a desired output of the GAMs. However, to avoid having to
make predictions using the monitoring program effect with the
highest selectivity, we could have developed generalized additive
mixed models (GAMMs; Lin and Zhang, 1999) treating gear as a
random effect rather than GAMs. We did not choose this option,
because GAMMs are computationally intensive and are likely
to face convergence issues when fitted to very large monitoring
datasets like ours. However, Grüss et al. (2017a) showed that

the spatial patterns of probability of encounter predicted by
GAMs treating monitoring program as a fixed effect factor are
unaffected by the monitoring program factor, and that the gross
magnitude of the probabilities of encounter predicted by these
GAMs are only slightly affected by the monitoring program
factor.

We employed thin-plate regression splines with shrinkage,
and each thin-plate regression spline was limited to four degrees
of freedom (Roberts et al., 2016; Mannocci et al., 2017). For
selecting environmental variables for each GAM, we used a
shrinkage approach (Roberts et al., 2016; Mannocci et al.,
2017). In addition to the shrinkage approach, we applied an
extra penalty to each environmental covariate as the smoothing
parameter approached zero, which allowed its removal when
the smoothing parameter was equal to zero (Marra and Wood,
2011; Drexler and Ainsworth, 2013; Grüss et al., 2014). Once a
GAM was fitted, if an environmental covariate p-value had a p >

0.05, it was removed and the model was refitted (Koubbi et al.,
2006; Weber and McClatchie, 2010; Grüss et al., 2014, 2016d,
2017a; Chagaris et al., 2015). The restricted maximum likelihood
(REML) optimization method was employed (Wood, 2011).

The data from the large monitoring database, like any
ecological data, are likely to show spatial structure (Legendre,
1993; Guisan and Thuiller, 2005; Dormann et al., 2007;
Elith and Leathwick, 2009). To examine this issue, we
constructed empirical variograms of the residuals from the
GAMs (Supplementary Data Sheet 1). Spatial structure is
absent when an empirical variogram is largely flat, while an
empirical variogram with patterns indicates that there is spatial
autocorrelation in model residuals (Cressie, 1993). Empirical
variograms tend to have a roughly logarithmic form in ecological
data. The existence of spatial autocorrelation can also be revealed
by spatial clusters of positive and negative residuals (Cressie,
1993; Grüss et al., 2016d).

Evaluation of Binomial GAMs
To evaluate the validity of the fitted GAMs, we used the “Leave
Group Out Cross Validation” procedure (Hastie et al., 2001;
Kuhn and Johnson, 2013). In this iterative cross-validation
procedure, for each functional group/life stage, monitoring data
were randomly split into training and test datasets, with 60% of
the data going to the training dataset and the rest of the data to
the test dataset (Grüss et al., 2016d). We fitted binomial GAMs
to the training dataset employing the fitting procedure described
in subsection Fitting of Binomial GAMs, and then evaluated the
GAMs using the test dataset. We repeated this process 10 times,
i.e., for each individual binomial GAM, 10 models were fitted
to training datasets and then evaluated using the test datasets
corresponding to the training datasets.

Two metrics were utilized to evaluate binomial GAMs
through the Leave Group Out Cross Validation procedure: (1)
the area under the receiver operating characteristic (ROC) curve
(AUC), which reflects if binomial GAMs are able to discriminate
between encounters and non-encounters (Hanley and McNeil,
1982); and (2) the adjusted coefficient of determination (adjusted
R2), which is a means to measure the proportion of variance
of the encounter probability explained by binomial GAMs
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(Legendre and Legendre, 1998). An AUC value of 0.5 indicates
no improvement in predictability over random chance, while an
AUC value of 1 is indicative of perfect discrimination between
encounters and non-encounters (Swets, 1988; Fielding and Bell,
1997; Pearce and Ferrier, 2000; Wintle et al., 2005; Leathwick
et al., 2006; Heinänen et al., 2008). The R package “pROC” was
employed to construct ROC curves and compute AUCs (Robin
et al., 2011).

For each functional group/life stage, a binomial GAM passed
the validation test if: (1) the median AUC value estimated via the
Leave Group Out Cross Validation procedure was larger than 0.7
(Hanley andMcNeil, 1982; Swets, 1988; Pearce and Ferrier, 2000);
and (2) the median adjusted R2 estimated via the Leave Group
Out Cross Validation procedure was larger than 0.1 (Legendre
and Legendre, 1998).

Production of Distribution Maps for the GOM LME

from the Predictions Made by Fitted Binomial GAMs
After all binomial GAMs were fitted and validated, we employed
them to predict the long-term probability of encounter of
functional groups and life stages in the GOM LME, at different
seasons. To be able to generate long-term probability of
encounter maps, we constructed 20 × 20 km prediction grids
for the GOM LME, based on the depth ranges at which the
functional groups/life stages are encountered by the monitoring
programs of the large monitoring database for the U.S. GOM.
To determine the depth at which the functional groups/life stages
are encountered by monitoring programs, we used the SRTM30
PLUS global bathymetry grid to generate a depth raster with
a resolution of 20 km; we obtained the SRTM30 PLUS global
bathymetry grid from the Gulf of Mexico Coastal Observing
System2 We made predictions with fitted binomial GAMs, using
the 20 × 20 km prediction grids, the 20 × 20 km gridded map
of environmental parameters, and the average year effect and
the monitoring program effect with the highest selectivity (Punt
et al., 2000; Maunder and Punt, 2004; Farmer and Karnauskas,
2013; Grüss et al., 2016a).

Development and Evaluation of
Geostatistical Binomial Glmms
Fitting of Geostatistical Binomial GLMMs
Our geostatistical modeling approach is described only briefly
below; the reader is referred to Grüss et al. (2017b,c) for details,
since we applied the same methodology as theirs.

The geostatistical models employed here are spatio-temporal
binomial GLMMs which predict encounter probabilities, and
Gaussian Markov random fields are used to model spatial
residuals in encounter probability (Grüss et al., 2017b,c). We
approximated Gaussian Markov random fields using 1,000
“knots”, for computational efficiency (Thorson et al., 2015); for
each functional group/life stage/season, the location of the knots
was determined through the application of a k-means algorithm
to the locations of the data of the large monitoring database for
the U.S. GOM, which distributes knots over space after having

2http://gcoos.tamu.edu/

considered the sampling intensity of the different monitoring
programs retained for a given functional group/life stage/season.

We fitted our geostatistical binomial GLMMs to the large
monitoring database for the U.S. GOM following the equation:

g
(

pi
)

=

nt
∑

t=1

βtYi,t +

nm
∑

m=1

γmGi,m + εJ(i) (2)

where pi is the encounter probability at site s(i); g is the logit
link function between pi and each term provided at the right
side of the equation; εJ(i) are the effects of the spatial residuals
in encounter probability at J(i), the nearest knot to sample i, on
the logit scale (random effects);

∑nm
m=1 γmGi,m is the effect of

monitoring program on pi on the logit scale; and
∑nt

t=1 βtYi,t is
the effect of year on pi on the logit scale. The effect of monitoring
program is treated as random via the implementation of REML,
and the year effect is fixed.

With regards to the effect of monitoring program, Gi,m is a
design matrix such that Gi,m is 1 for the monitoring program m
which collected sample i and 0 otherwise; γm is a monitoring
program effect (where γm = 0 for the monitoring program
m with the largest sample size for a given functional group/life
stage/season; we imposed this constraint for identifiability of all
year effects βt); and nm is the number of monitoring programs
retained for the functional group/life stage/season considered.

With regards to the effect of year, Yi,t is a design matrix
such that Yi,t is 1 for the year t during which sample i was
collected and 0 otherwise; βt is an intercept varying among
years; and nt is the number of sampling years for the functional
group/life stage/season considered. Our geostatistical GLMMs
use data in every year t to predict what would arise in any
site i. The intercept βt then means that encounter probability is
scaled up or down amongst years, where the change in encounter
probability (in logit-odds) is the same between any 2 years
for any site. Therefore, the intercept βt accounts for the fact
that different years might have a higher or lower encounter
probability for all sites in a given year. If the spatial footprint
of a given monitoring program changes amongst years, then our
geostatistical GLMMs account for this by comparing it with the
predicted encounter probability at each site. If the data for a
given site and monitoring program is higher than the prediction
for that site, this leverage causes our geostatistical GLMMs to
increase the predicted encounter probability at that site (in order
to decrease model residuals).

Finally, with regards to the random effects εJ(i), those follow a
multivariate normal distribution:

ε ∼ MN (0,6) (3)

where MN is the multivariate normal distribution, whose
expected value was fixed to 0 for each site; and 6 is a covariance
matrix for ε at each site. We assumed that the covariance between
sites s and s′ is stationary and follows a Matérn distribution with
smoothness ν = 1:

6
(

s, s′
)

= σ 2
ε .Matérn

(

||H
(

s− s′
)

||; κ
)

(4)
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where σε is the standard deviation of ε; H is the linear
transformation representing geometric anisotropy3;

(

s− s′
)

=
(

x− x′, y− y′
)

is the difference in eastings and northings
between sites s and s′;H

(

s− s′
)

is the distance between sites after
having accounted for geometric anisotropy (Cressie and Wikle,
2015; Thorson et al., 2015); and κ is the range parameter, which
governs the distance over which covariance reaches 10% of its
pointwise value (Thorson et al., 2016).

To estimate the fixed effect of year, we employed maximum
marginal likelihood while integrating across the random effects
of gear and ε; the Laplace approximation implemented in the
Template Model Builder (Kristensen et al., 2016) was used to
approximate maximum marginal likelihood. More precisely, we
first approximated the probability of the random effects through
use of the stochastic partial differential equation approximation
for Gaussian random fields with geometric anisotropy described
in Thorson et al. (2015) and based on methods in Lindgren et al.
(2011). Then, we maximized the marginal likelihood through
conventional non-linear optimization in the R environment (R
Core Development Team, 2013).

Evaluation of Geostatistical Binomial GLMMs
To determine whether the geostatistical binomial GLMMs fitted
for the different functional groups/life stages/seasons converged,
we examined whether any of the parameters H, κ and σε hit
an upper or lower bound, and whether the absolute value of
the final gradient for each of these parameters was close to
zero. Moreover, to gauge geostatistical GLMM fits, we calculated
Pearson residuals for the samples considered for each functional
group/life stage/season, as described in Supplementary Data
Sheet 2.

Production of Distribution Maps for the U.S. GOM

from the Predictions Made by Fitted Geostatistical

Binomial GLMMs
To be able to generate probability of encounter maps from
predictions made by geostatistical binomial GLMMs, we first
constructed 20 × 20 km prediction grids for each functional
group/life stage/season. To do so, we generated a 20 × 20 km
spatial grid covering the entire U.S. GOM (Figure 3). Then,
we employed the depth raster we produced from the SRTM30
PLUS global bathymetry grid (see subsection Production of
DistributionMaps for the GOM LME from the Predictions Made
by Fitted Binomial GAMs) to determine the depths at which
each of the study functional groups/life stages are encountered
by monitoring programs year-round or at different seasons,
Finally, we defined prediction grids for each functional group/life
stage/season from the spatial grid for the U.S. GOM (Figure 3),
based on the ranges of longitude, latitude and depth at which
the functional groups/life stages are encountered by monitoring
programs year-round or at different seasons.

To generate the distribution maps for the U.S. GOM for
each of the functional groups/life stages/seasons, we made the
assumption that the Gaussian random field in each cell of

3Geometric anisotropy is a condition where autocorrelation between locations

varies with both distance and direction.

FIGURE 3 | Spatial grid (20 × 20 km) for the U.S. Gulf of Mexico.

their prediction grid is equal to the value of the Gaussian
random field at the nearest knot. First, for each functional
group/life stage/season, we used the fitted geostatistical binomial
GLMM for that functional group/life stage/season to produce
a probability of encounter map for each of the sampling years.
Then, the probability of encounter maps for each sampling year
were averaged to construct one final, long-term probability of
encounter map for each functional group/life stage/season for the
U.S. GOM.

Construction of Distribution Maps Usable
in the Atlantis-GOM Ecosystem Model
To construct a distribution map for each functional group/life
stage/season that is usable in the Atlantis-GOM ecosystem
model, we proceeded in three steps (Steps 4A,B, 5A,B, and 6 in
Figure 2).

First, we generated a map of relative abundance for the
GOM LME from the long-term probability of encounter map
produced from GAM predictions (see subsection Production
of Distribution Maps for the GOM LME from the Predictions
Made by Fitted Binomial GAMs), such that the sum of relative
abundances for the map is equal to 1.0 (Step 4A in Figure 2). This
resulted in a map such that the sum of relative abundances in the
U.S. GOM is equal to N1 and the sum of relative abundances
in the southern GOM is equal to N2, such that N1 + N2 =

1.0. In parallel, we generated a map of relative abundance for
the U.S. GOM from the long-term probability of encounter map
produced from geostatistical GLMM predictions (see subsection
Production of Distribution Maps for the U.S. GOM from the
Predictions Made by Fitted Geostatistical Binomial GLMMs),
such that the sum of relative abundances for the map is equal to
1.0 (Step 4B in Figure 2).

Second, we generated a map a relative abundance for the
southern GOM from the map of relative abundance for the
GOM LME (Step 5A in Figure 2), such that the sum of
relative abundances for the map is equal to N2. In parallel, we
generated a map of relative abundance for the U.S. GOM (Step
5B in Figure 2), which reflects the spatial patterns of relative
abundance of the map produced in Step 4B while accounting
for relative abundance in the U.S. GOM relative to the southern
GOM according to the map produced in Step 4A (such that the
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sum of relative abundances for the map produced in Step 5B is
equal to N1).

Third, we combined the map of relative abundance for the
southern GOM produced in Step 5A and the map of relative
abundance for the U.S. GOM produced in Step 5B, to obtain a
map of relative abundance usable in the Atlantis-GOM model
(Step 6 in Figure 2).

In the following, for illustration purposes, we analyze in detail
the distribution maps we generated for Atlantis-GOM for the
following three life stages: juvenile pink shrimp (Farfantepenaeus
duorarum), adult pink shrimp, and adult red grouper. We also
compare the distribution maps for Atlantis-GOM produced in
this study to those produced in Drexler and Ainsworth (2013).
For all the fish and invertebrates represented in Atlantis-GOM,
Drexler and Ainsworth (2013) fitted negative binomial GAMs
integrating dominant sediment type, bottom depth, bottom
temperature, bottom DO concentration and surface chlorophyll-
a concentration to abundance data from the SEAMAP (Southeast
Area Monitoring and Assessment Program) Groundfish/Trawl
Survey; the authors then employedGAMpredictions to construct
maps of relative abundance usable in Atlantis-GOM.

RESULTS

Development and Evaluation of Binomial
GAMs
Fitting of Binomial GAMs
It was possible to use the encounter/non-encounter data of the
large monitoring database for the U.S. GOM to fit reasonable
binomial GAMs for the majority of the fish and invertebrate
functional groups and life stages represented in Atlantis-GOM
(Supplementary Table 3). Some of the binomial GAMs we
initially fitted did not pass the validation test, because their
median adjusted R2 (produced through the Leave Group Out
Cross Validation procedure) was smaller than 0.1; therefore,
we decided not to employ these GAMs but rather GAMs for
related functional groups/life stages to generate distribution
maps (Supplementary Table 3). For instance, we decided to use:
(1) a GAM fitted for all life stages of ladyfish (Elops saurus)
instead of the GAMs fitted for the juvenile and adult stages of that
species to produce distribution maps; and (2) the GAM of white
marlin to produce distribution maps for blue marlin (Makaira
nigricans). Moreover, none of the datasets included in the large
monitoring database for the U.S. GOM provided encounter/non-
encounter data for filter feeding sharks; therefore, we were unable
to fit binomial models for this functional group. Ultimately, we
fitted a total of 76 GAMs in the present study (Supplementary
Table 3).

Evaluation of Binomial GAMs
We computed adjusted R2’s and AUCs for the 76 binomial
GAMs we fitted using the Leave Group Out Cross Validation
procedure (Supplementary Table 5) and, for each of these
GAMs, we constructed empirical variograms of the residuals
(Supplementary Figure 1).

Fifty five of the 76 fitted binomial GAMs (i.e., 72% of the
fitted GAMs) had a median AUC value in the range of 0.7–0.9

(Supplementary Table 5). The 21 other fitted binomial GAMs
had a median AUC value larger than 0.9. Bluefin tuna (Thunnus
thynnus) had the lowest median AUC (0.708), while yellowfin
tuna (Thunnus albacares) had the highest (0.986).

The median adjusted R2’s produced through the Leave Group
Out Cross Validation procedure ranged between 0.10 (adult gag,
bluefin tuna, and adult pink shrimp) and 0.84 (yellowfin tuna)
(Supplementary Table 5). Fifty eight of the 76 fitted binomial
GAMs had a median adjusted R2 value in the range of 0.1–0.3.
Only three binomial GAMs had a median adjusted R2 at or >0.5
[those fitted for juvenile black drum (Pogonias cromis), yellowfin
tuna, and squids].

The empirical variograms show that, in the great
majority of cases, GAM residuals are spatially autocorrelated
(Supplementary Figure 1). Exceptions to this pattern include
juvenile red drum (Sciaenops ocellatus), juvenile sheepshead
(Archosargus probatocephalus), juvenile snooks (Centropomus
spp.), adult snooks, and adult stone crab (Menippe mercenaria).
When the residuals from a fitted binomial GAM showed spatial
structure, this spatial structure was generally significant.

Development and Evaluation of
Geostatistical Binomial GLMMs
Fitting of Geostatistical Binomial GLMMs
It was not possible to fit geostatistical binomial GLMMs for all the
fish and invertebrate functional groups and life stages for which
we fitted binomial GAMs (Table 4 and Supplementary Table 6).
The reasons for this included: (1) an absence of monitoring data
for Louisiana and Mississippi waters in the large monitoring
database (e.g., juvenile and adult black drums, ladyfish, mullets);
(2) and absence of monitoring data for Louisiana, Mississippi
and Alabama waters in the large monitoring database (e.g.,
juvenile and adult sheepshead, oysters); or (3) monitoring data
not covering the full depth range of the functional group/life stage
under consideration (e.g., bluefin tuna, white marlin) (Table 4).
Ultimately, we fitted a total of 77 geostatistical binomial GLMMs
(Supplementary Table 6).

TABLE 4 | Functional groups and life stages for which it was not possible to

develop geostatistical binomial generalized linear mixed models in the present

study.

Reason Functional group/life stage

No monitoring data for Louisiana and

Mississippi waters in the large

monitoring database

Juvenile black drum (Pogonias

cromis), adult black drum, juvenile red

drum (Sciaenops ocellatus), ladyfish

(Elops saurus), mullets

No monitoring data for Louisiana,

Mississippi and Alabama waters in

the large monitoring database

Juvenile sheepshead (Archosargus

probatocephalus), adult sheepshead,

juvenile snooks, adult snooks, juvenile

stone crab (Menippe mercenaria),

adult stone crab, oysters

Monitoring data not covering the full

depth range of the functional

group/life stage under consideration

Yellowfin tuna (Thunnus albacares),

bluefin tuna (Thunnus thynnus),

swordfish (Xiphias gladius), white

marlin (Tetrapturus albidus)
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Evaluation of Geostatistical Binomial GLMMs
For all the functional groups/life stages/seasons, we found that
none of the parameters H, κ and σε hit an upper or lower bound,
and that the absolute value of the final gradient for each of these
parameters was smaller than 0.002 (Supplementary Table 7).
Thus, there was no evidence of non-convergence for any of the
functional groups, life stages and seasons.

For all the functional groups/life stages/seasons, observed
encounter frequencies for either low or high probability samples
were generally within or extremely close to the 95% confidence
interval for predicted probability of encounter (Supplementary
Figure 2). Exceptions to this general pattern occurred for:
(1) juvenile gag; (2) juvenile shallow Serranidae; (3) vermilion
snapper (Rhomboplites aurorubens); (4) juvenile large reef
fish; (5) adult large reef fish; (6) Spanish sardine (Sardinella
aurita); (7) juvenile menhadens (Brevoortia spp.) in fall-winter;
(8) adult menhadens in spring-summer; and (9) carnivorous
macrobenthos. In the nine above mentioned cases, observed
encounter frequency for the highest probability samples were
noticeably smaller than the 95% confidence interval for predicted
probability of encounter (Supplementary Figure 2). Yet, in these
nine cases, geostatistical binomial GLMMs did not systematically
overestimate or underestimate encounter probability in any area
of the U.S. GOM (Supplementary Figure 3).

Distribution Maps for the Atlantis-GOM
Ecosystem Model
From the large monitoring database, we were able to construct a
total of 53 annualmaps and 64 seasonalmaps (for 32 different fish
and invertebrate functional groups/life stages) for Atlantis-GOM.
We were unable to strictly follow the methodology depicted in
Figure 2 for the functional groups and life stages for which it
was not possible to fit geostatistical binomial GLMMs; for those,
we produced distribution maps for Atlantis-GOM directly from
GAMpredictions. Here, we present a few of the distributionmaps
we constructed (Figure 4); the rest of the distribution maps are
provided in Supplementary Figure 4.

GAM and GLMM predictions were combined to generate
annual distribution maps for the juvenile and adult stages of
pink shrimp (Figures 4A–F). Both the binomial GAM and the
geostatistical binomial GLMM fitted for juvenile pink shrimp
predicted the life stage to be primarily encountered from
Apalachicola (Florida) to the southern West Florida Shelf at
depths < 40m, especially in the area around the Dry Tortugas,
as well as on the Texas-Mexico border (Figures 4A,B). The
binomial GAM of juvenile pink shrimp also predicted the life
stage to be encountered all over the Campeche Bank, mainly
at depths < 40m (Figure 4B). Both the binomial GAM and
the geostatistical binomial GLMM fitted for adult pink shrimp
predicted the life stage to primarily occur from Apalachicola to
the southernWest Florida Shelf at depths ranging between 20 and
80m, particularly in the area around the Florida Keys and the Dry
Tortugas, as well as in the region off Alabama and Mississippi
where depth ranges between 20 and 40m and on the Texas-
Mexico border (Figures 4D,E). Yet, contrary to the binomial
GAM, the geostatistical binomial GLMM fitted for adult pink

shrimp predicted similar probabilities of encounter in the area
around the Florida Keys and the Dry Tortugas and in the region
off Alabama and Mississippi where depth ranges between 20 and
40m. The binomial GAM of adult pink shrimp also predicted
that the northern Campeche Bank is a hotspot of probability of
encounter for adult pink shrimp (Figure 4E).

GAM and GLMM predictions were also combined to produce
an annual distributionmap for adult red grouper (Figures 4G–I).
The binomial GAM of adult red grouper predicted the life
stage to be mainly encountered over the entire U.S. GOM
shelf at depths less than 60m (Figure 4G). By contrast, the
geostatistical binomial GLMM of adult red grouper predicted the
life stage to be encountered primarily from Apalachicola to the
southern West Florida Shelf at depths < 60m, to be very rarely
encountered in Alabama, Mississippi and Louisiana waters, and
to be absent from Texas waters (Figure 4H). The absence of adult
red grouper from Texas waters is due to the fact that none of the
monitoring programs included in the large monitoring database
for the U.S. GOM encountered adult red grouper in Texas waters,
although there was a large sample size of observations using gears
that captured red groupers in other regions of the U.S. GOM.
Consequently, the probability of encounter map produced from
geostatistical GLMM predictions did not include Texas waters,
and, in the map of relative abundance produced for Atlantis-
GOM, adult red grouper is assumed to be absent from Texas
waters (Figure 4I). The relative abundance of adult red grouper
in the southern GOM was determined from the probability of
encounter map produced fromGAMpredictions; in the southern
GOM, the bulk of adult red groupers were predicted to be
encountered all over the Campeche Bank, mainly at depths <

60m (Figures 4G,I).
Differences between the distribution maps for Atlantis-GOM

produced in this study and those produced in Drexler and
Ainsworth (2013) are more or less pronounced depending on
the functional group/life stage under consideration (Figure 5).
Contrary to the present study, Drexler and Ainsworth (2013)
produced one single map for pink shrimp (i.e., for juveniles
and adults combined). Pink shrimp is more homogeneously
distributed in the GOM LME according to Drexler and
Ainsworth’s (2013) approach than according to our methodology
(Figures 5A,B vs. Figures 5C,D). In particular, Drexler and
Ainsworth’s (2013) approach predicts pink shrimp to be relatively
abundant over the shelves of central and eastern Texas and
Louisiana, contrary to our methodology. The differences between
the spatial distributions predicted in Drexler and Ainsworth
(2013) and those predicted in this study are more pronounced
for adult red grouper (Figure 5E vs. Figure 5F). Importantly,
Drexler and Ainsworth (2013) predicted adult red grouper to be
relatively abundant on the Texas shelf, while adult red grouper is
absent from this area according to the map of relative abundance
we generated for Atlantis-GOM in the present study.

DISCUSSION

In the present study, we developed a novel methodology for
producing distribution maps for a spatially-explicit ecosystem
model using large monitoring and environmental databases and
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FIGURE 4 | Distribution maps produced for (A–C) juvenile pink shrimp (Farfantepenaeus duorarum), (D–F) adult pink shrimp, and (G–I) adult red grouper

(Epinephelus morio). (A,D,G) are probability of encounter maps for the entire Gulf of Mexico Large Marine Ecosystem generated from the predictions of generalized

additive models (GAMs). (B,E,H) are probability of encounter maps for the U.S. Gulf of Mexico generated from the predictions of geostatistical generalized linear

mixed models (GLMMs). Finally, (C,F,I) are maps of relative abundance usable in the Atlantis-GOM ecosystem model (such that the sum of relative abundances for

each map is equal to 1.0).

a combination of interpolation and extrapolation. This novel
methodology has a number of advantages. First, it makes use of all
the monitoring data collected in the ecosystem of interest using
random sampling schemes, thereby allowing the development of
more reliable statistical models. Then, ourmethodology performs
extrapolation using GAMs integrating only environmental
covariates that are pertinent for the functional groups and
life stages of interest. Finally, our methodology performs
interpolation using geostatistical models in the regions where
monitoring data are available, thereby accounting for spatial
structure in spatial distribution patterns in those regions. This is
particularly desirable because the residuals from GAMs fitted to
monitoring data typically show spatial structure (as was the case
in the present study; Supplementary Figure 1).

In order to construct reliable distribution maps for the
Atlantis-GOM ecosystemmodel, we decided not to strictly follow
our methodology in some cases. First, when a GAM did not
pass the validation test, we used a GAM for a related functional
group/life stage to generate distribution maps for the GOMLME.
Second, we did not fit geostatistical GLMMs for those functional

groups and life stages whose depth, longitudinal and latitudinal
ranges are not entirely covered by the monitoring data from the
large monitoring database for the U.S. GOM. For those, only
GAM predictions were employed to obtain distribution maps for
Atlantis-GOM. From the large monitoring and environmental
databases, we were able to produce 53 annual maps and 64
seasonal maps (for 32 different functional groups/life stages)
for the Atlantis-GOM model. We had no data for filter feeding
sharks [basking shark (Cetorhinus maximus), and whale shark
(Rhincodon typus)] in the large monitoring database for the
U.S. GOM. To be able to generate a distribution map for this
functional group, we fitted a MaxEnt model (Phillips et al.,
2006, 2017) to presence-only data for basking and whale sharks
obtained from the Ocean Biogeographic Information System4

(Supplementary Data Sheet 3). Thus, ultimately, we produced
a total of 117 annual and seasonal maps for the fish and
invertebrate functional groups and life stages represented in the
Atlantis-GOM ecosystem model (Supplementary Figure 4).

4http://www.iobis.org/
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FIGURE 5 | Maps of relative abundance for the Atlantis-GOM ecosystem model (such that the sum of relative abundances for each map is equal to 1.0), produced

(A–C,E) in the present study and (C,D,F) in Drexler and Ainsworth (2013). (A,C) are for juvenile pink shrimp (Farfantepenaeus duorarum), (B,D) are for adult pink

shrimp, and (E,F) are for adult red grouper (Epinephelus morio).

The usefulness of our methodology combining GAM
and geostatistical GLMM predictions is exemplified by the
distribution maps generated for pink shrimp and adult red
grouper (Figure 4). The distribution maps produced for juvenile
and adult pink shrimps from GAM and geostatistical GLMM
predictions concurred with previous studies in that pink shrimp
hotspots are found on the West Florida Shelf, around the Dry
Tortugas and the Florida Keys, in the region off Alabama and
Mississippi where depth ranges between 20 and 40m, on the
Texas-Mexico border, and on the Campeche Bank (Costello
and Allen, 1970; Bielsa et al., 1983; Ramirez-Rodriguez et al.,
2003; Drexler and Ainsworth, 2013; Grüss et al., 2014). However,
reflecting monitoring data for the U.S. GOM, the geostatistical
GLMM of adult pink shrimp predicted that the life stage
has a very high probability to be encountered in the region
off Alabama and Mississippi where depth ranges between 20

and 40m, contrary to the GAM of adult pink shrimp. More
importantly, the GAM of adult red grouper was unable to
correctly predict the spatial distribution of the life stage in
the U.S. GOM. Consistent with the literature (Coleman et al.,
1996, 2011; Lombardi-Carlson et al., 2008; Albañez-Lucero and
Arreguin-Sanchez, 2009), the GAM and the geostatistical GLMM
of adult red grouper predicted that the life stage has a high
probability to be encountered over the entire West Florida and
on the Campeche Bank. However, like the GAM fitted in Drexler
and Ainsworth (2013), the GAM of adult red grouper fitted in
this study also wrongly predicted that the life stage has a high
probability to be encountered over the rest of the U.S. GOM shelf,
while there is a consensus in the literature that adult red grouper
is very rarely encountered west of the Florida-Alabama border
(Coleman et al., 1996, 2011; Franks, 2005; Burns and Robbins,
2006; Lombardi-Carlson et al., 2008); it has been suggested that
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the presence of red grouper west of the Florida-Alabama border
relates to displacement of individuals by storms and hurricanes or
anomalous oceanic current patterns resulting in the settlement of
grouper larvae west of the De Soto Canyon (Franks, 2005; Burns
and Robbins, 2006; Dance et al., 2011; Karnauskas et al., 2013).

A major limitation of the methodology introduced in this
study is that it relies on GAMs that do not account for spatial
structure. One can account for spatial structure in GAMs through
the integration of a spatial autocorrelation term (Guisan and
Thuiller, 2005; Zuur et al., 2014), or of an interaction term
between eastings and northings (Wood, 2006; Grüss et al.,
2016d); however, it was not possible to implement either of
these options in the present study, since we needed to perform
extrapolation to the entire GOM LME while we had monitoring
data only for the U.S. GOM. The autocorrelated residual variance
found for the great majority of the functional groups/life stages
in this study (Supplementary Figure 1), combined with the
broad spatial scale of the maps of probability of encounter we
generated, mean that these maps are not particularly useful for
localized predictions. By necessity, mapping the general spatial
distribution of functional groups/life stages usually requires
some abstraction of the populations. Hence, the predictions we
made with GAMs in the present study would not be useful for
informing whether one would be likely to capture functional
groups/life stages at a particular location of the GOM LME.
This is evident, for example, if we compare the ranges of
autocorrelation between the residuals of the model fits for gag
and red grouper life stages found in this study (Supplementary
Figure 1) with the smaller ones found when modeling individual
catch per unit effort information in Saul et al. (2013); the
ranges of autocorrelation for gag and red grouper found in Saul
et al. (2013) were much closer to the sizes of individual habitat
patches. Thus, it is important to emphasize that the modeled
products that we reported in this study are valuable to capture
larger spatial patterns necessary for running simulations with
ecosystem models, but not to predict the spatial distribution
patterns of fish and invertebrate populations with high
precision.

Another limitation of the present study is that, for each
functional group, we relied on one reference species to determine
whether to model ontogenetic differences in spatial distribution
patterns and environmental influences on spatial distribution
patterns (Supplementary Table 3). In other words, we made
the assumption that all the species of a given functional group
share the same spatial distribution patterns, namely those of
the reference species of the functional group (although data
extraction and statistical model fitting considered all the species
making up the study functional groups). This assumption is
reasonable given the large number of fish and invertebrates we
had to deal with (63) and the very low spatial resolution of
the Atlantis-GOM ecosystem model (Figure 1B). Yet, studies
using our methodology to construct distribution maps for a
spatially-explicit ecosystem model with the higher resolution
than that of Atlantis-GOM may want to proceed another way;
for example, these studies may want to rely on several reference
species for deciding whether the spatial distribution patterns of
the juveniles and adults of each functional group differ and which

environmental parameters should be integrated in the GAM of
each functional group.

Some modifications could be introduced in the structure and
validation process of our geostatistical models in future studies.
For simplicity, we did not integrate environmental parameters
in our geostatistical GLMMs, because preliminary analyses
conducted for previous studies using geostatistical models to
infer fish and invertebrate spatial distributions in the U.S. GOM
found that spatial residuals in probability of encounter have
a much larger influence on probabilities of encounter than
environmental variables (Grüss et al., 2017b,c). Also, typically,
relationships between the probability of encounter of fish and
invertebrates and environmental parameters are non-linear,
which is something that the geostatistical GLMMs employed
in this study cannot represent at present. Thus, it appeared
more appropriate not to integrate environmental parameters in
our geostatistical models, and we recommend that the future
studies wishing to integrate environmental parameters in our
geostatistical models should first incorporate non-linearities into
these models. Moreover, to validate our geostatistical models,
we used standard procedures, i.e., convergence diagnostics and
analyses of Pearson residuals (Thorson et al., 2015; Grüss et al.,
2017b,c). Future studies could implement the Leave Group Out
Cross Validation procedure for our geostatistical models and
estimate their adjusted R2 and AUC; it would then be possible
to compare the AUCs of binomial GAMs with those of binomial
geostatistical GLMMs fitted to the same monitoring data and,
thus, to compare the ability of binomial GAMs and binomial
geostatistical GLMMs to discriminate between encounters and
non-encounters.

We generated maps of relative abundance for the Atlantis-
GOM ecosystem model from probability of encounter maps.
Thus, as is often done in the mapping literature (e.g., Maxwell
et al., 2009; Hattab et al., 2013; Cormon et al., 2014; Grüss
et al., 2014, 2017b,c), we assumed a linear relationship between
probability of encounter and abundance. This assumption is
appropriate for many of the functional groups represented
in Atlantis-GOM that are structure-oriented; the abundance
of structure-oriented functional groups, such as red grouper
and gag, may be primarily determined by the encounter/non-
encounter of a suitable structure (Saul et al., 2013; Grüss et al.,
2017c). Yet, spatial patterns of probability of encounter and
spatial patterns of abundance often rely on slightly different
determinants (Nielsen et al., 2005; Koubbi et al., 2006; Aarts et al.,
2012; Grüss et al., 2014); thus, if we had produced distribution
maps from abundance predictions (e.g., if we had hadmonitoring
data for the entire GOM LME), some of those distribution maps
may have been slightly different from the distribution maps
constructed in the present study. In the future, if we had access to
a reasonable amount of monitoring data for the southern GOM,
it would be interesting to evaluate the consequences of employing
abundance vs. probability of encounter maps to produce maps of
relative abundance for Atlantis-GOM with our methodology.

The goal of this study was to obtain the maximum of data
possible to generate distribution maps for a spatially-explicit
ecosystem model. However, while our methodology represents a
an improvement over previous ones (Grüss et al., 2016a), further
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improvements could be made. First, for the sake of statistical
rigor, only monitoring data collected using random sampling
schemes were employed to fit statistical models in the present
study. Developing methods to use data from both random
and fixed sampling stations would allow us to fit geostatistical
models for coastal functional groups/life stages such as juvenile
red drum and juvenile and adult snooks (Table 4) for which
a large amount of monitoring data is collected using fixed
sampling schemes in Louisiana, Mississippi and Alabama (Grüss
et al., 2016a). Moreover, rather than combining interpolation
and extrapolation as we did, future studies could employ only
interpolation and combine the predictions made by different
geostatistical models, each fitted to the monitoring data collected
in a given region (e.g., in the waters of the different countries
bordering a LME). Such an endeavor would be highly challenging
in our case, due to the scarcity or limited access to monitoring
data collected in the southern GOM.

Our inability to fit geostatistical binomial GLMMs for some
of the functional groups and life stages represented in Atlantis-
GOM revealed data gaps for two groups of fish and invertebrates
of the U.S. GOM: (1) coastal functional groups and life stages,
such as juvenile red drum, juvenile and adult snooks, ladyfish
and oysters; and (2) large pelagic fish, such as bluefin tuna and
white marlin (Table 4). Data collected at random stations are
missing for Louisiana, Mississippi and Alabama for the first
group, as mentioned above. In parallel to the development of new
statistical methodologies employing monitoring data collected
using fixed sampling schemes, we encourage the initiation of
new monitoring programs using random sampling schemes in
Louisiana, Mississippi and Alabama, for the sake of having a
set of monitoring programs using similar sampling protocols
over the entire U.S. GOM. Data for species such as bluefin
tuna and white marlin are collected almost exclusively by the
National Marine Fisheries Service Pelagic Observer Program,
which operates in the offshore waters of the GOM LME, while
these species are found both inshore and offshore in the GOM.
We recommend the use of fisheries-independent longline surveys
to collect data for these species in inshore areas of the GOM and
the development of statistical models that can be fit to a mix of
data collected using fixed and random samplings schemes.

The methodology developed in the present study will allow
for the use of more reliable inputs in spatially-explicit ecosystem
models. Spatially-explicit ecosystem models, especially highly
sophisticated models such as applications of the Atlantis
modeling platforms, rely on numerous data inputs, many of
which can have a significant impact on ecosystem model
predictions (Fulton et al., 2007; Shin et al., 2010; Walters et al.,
2010; Steele et al., 2013). Many spatially-explicit ecosystem
models have been designed worldwide (Fulton, 2010; Espinoza-
Tenorio et al., 2012; Steele et al., 2013), and significant attention
has been devoted to enhance the structure and assumptions of
ecosystem modeling platforms (e.g., Shin et al., 2010; Steenbeek
et al., 2013, 2016; Travers-Trolet et al., 2014; Grüss et al.,
2016b,c). Therefore, it is now high time to develop and employ
methodologies such as ours for ensuring that the spatially-explicit
ecosystem models available around the world are provided
with reliable inputs generated using the best available data and

information. We hope that the methodology developed in this
study will serve other regions of the world, particularly LMEs
bordered by several countries (e.g., the Benguela Current LME,
and the Humboldt Current LME).
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